If it's not what You are looking for type in the equation solver your own equation and let us solve it.
9=-16t^2+25.6t+5
We move all terms to the left:
9-(-16t^2+25.6t+5)=0
We get rid of parentheses
16t^2-25.6t-5+9=0
We add all the numbers together, and all the variables
16t^2-25.6t+4=0
a = 16; b = -25.6; c = +4;
Δ = b2-4ac
Δ = -25.62-4·16·4
Δ = 399.36
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-25.6)-\sqrt{399.36}}{2*16}=\frac{25.6-\sqrt{399.36}}{32} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-25.6)+\sqrt{399.36}}{2*16}=\frac{25.6+\sqrt{399.36}}{32} $
| 4(6+4x)=0 | | -25=-5+4h | | 4(6+4x)=0 | | 9=-16t^2+25.6t+5 | | 9=-16t^2+25.6t+5 | | 9=-16t^2+25.6t+5 | | 9=-16t^2+25.6t+5 | | 9=-16t^2+25.6t+5 | | 9=-16t^2+25.6t+5 | | /4x-8=9-0.6x | | 9=-16t^2+25.6t+5 | | 5-5x3=2 | | -12+2m=8 | | 21-9f=20f(f-6) | | 5r+10=2r+16 | | 21-9f=20f(f-6) | | 21-9f=20f(f-6) | | 21-9f=20f(f-6) | | -12+2m=8 | | -12+2m=8 | | 3/2(x+1/3)=-1 | | 3/2(x+1/3)=-1 | | 3/2(x+1/3)=-1 | | -12+2m=8 | | 3/2(x+1/3)=-1 | | 3/2(x+1/3)=-1 | | -12+2m=8 | | -12+2m=8 | | 4(6x-16)=32 | | 4(6x-16)=32 | | X*2x=168 | | -12+2m=8 |